Exercise 8

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}-y=x e^{2 x}, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-1=0
$$

Solve for r.

$$
r=\{-1,1\}
$$

Two solutions to the ODE are e^{-x} and e^{x}. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-x}+C_{2} e^{x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-y_{p}=x e^{2 x} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a polynomial of degree 1 multiplied by an exponential function, the particular solution is $y_{p}=(A+B x) e^{2 x}$.
$y_{p}=(A+B x) e^{2 x} \quad \rightarrow \quad y_{p}^{\prime}=(B) e^{2 x}+2(A+B x) e^{2 x} \quad \rightarrow \quad y_{p}^{\prime \prime}=2 B e^{2 x}+2(B) e^{2 x}+4(A+B x) e^{2 x}$
Substitute these formulas into equation (2).

$$
\begin{gathered}
{\left[2 B e^{2 x}+2(B) e^{2 x}+4(A+B x) e^{2 x}\right]-(A+B x) e^{2 x}=x e^{2 x}} \\
(2 B+2 B+4 A-A) e^{2 x}+(4 B-B) x e^{2 x}=x e^{2 x}
\end{gathered}
$$

Match the coefficients on both sides to get a system of equations for A and B.

$$
\left.\begin{array}{r}
2 B+2 B+4 A-A=0 \\
4 B-B=1
\end{array}\right\}
$$

Solving it yields

$$
A=-\frac{4}{9} \quad \text { and } \quad B=\frac{1}{3}
$$

which means the particular solution is

$$
y_{p}=\left(-\frac{4}{9}+\frac{1}{3} x\right) e^{2 x} .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-x}+C_{2} e^{x}+\left(-\frac{4}{9}+\frac{1}{3} x\right) e^{2 x},
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants. Differentiate it with respect to x.

$$
y^{\prime}(x)=-C_{1} e^{-x}+C_{2} e^{x}+\left(\frac{1}{3}\right) e^{2 x}+2\left(-\frac{4}{9}+\frac{1}{3} x\right) e^{2 x}
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{gathered}
y(0)=C_{1}+C_{2}-\frac{4}{9}=0 \\
y^{\prime}(0)=-C_{1}+C_{2}-\frac{5}{9}=1
\end{gathered}
$$

Solving the system yields $C_{1}=-5 / 9$ and $C_{2}=1$. Therefore,

$$
y(x)=-\frac{5}{9} e^{-x}+e^{x}+\left(-\frac{4}{9}+\frac{1}{3} x\right) e^{2 x} .
$$

